Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611310

RESUMO

The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find them together in a processed food product. This could lead to healthier and more functional food products, which may have positive implications for consumer health and well-being. This work aimed to fortify a model burger manufactured with fillets of an Amazonian fish (boquichico, Prochilodus nigricans) by adding microencapsulated sacha inchi oil (Plukenetia volubilis, rich in ALA) (MSIO) produced by spray-drying. MSIO was incorporated into the burgers at different levels (0, 3, 4, 5, and 6%). The burgers were characterized by their proximal composition, cooking losses, texture profile, lipid oxidation, sensory profile, overall liking, and fatty acid profile. The results showed that adding MSIO up to concentrations of 5% or 6% increased the instrumental hardness, chewiness, and lipid oxidation in the burgers. However, fortifying the burgers with 3% MSIO was possible without affecting the burgers' sensory properties and overall liking. Regarding the fatty acid profile, the burgers with 3% MSIO had a higher content of polyunsaturated fatty acids, with the ALA, EPA, and DHA types of fatty acids. Therefore, we recommend using this fortification concentration, but future studies should be carried out to improve the oxidative stability of MSIO and the burgers.

2.
J Tradit Complement Med ; 14(2): 148-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481551

RESUMO

Background and aim: The purpose of the study was to investigate the anti-hyperglycemic effect of extra virgin sacha inchi oil (EVSIO) and its possible mechanisms and actions against pancreatic ß-cell death and dysfunction in type 2 diabetic (T2D) rats. Experimental procedure: T2D rats were induced with a high-fat diet and low-dose of streptozotocin. The rats were then treated for 5 weeks with EVSIO (0.5, 1, and 2 ml/kg), or pioglitazone. Biochemical and histopathological studies, oxidative and inflammatory markers, and expression of apoptotic-related proteins were then evaluated. Results: EVSIO treatment exhibited a dose-dependent reduction of fasting blood glucose, area under the curve of glucose, total cholesterol, and triglyceride levels in the diabetic rats, while improved pancreatic ß-function was demonstrated by increasing pancreatic and serum insulin levels. EVSIO treatment effectively lowered atrophic pancreatic islets and reduced the level of serum and pancreatic MDA in the diabetic rats. In addition to serum and pancreatic GPx activities in the diabetic rats, EVSIO also augmented serum SOD. Increased levels of NF-κB, TNF-α and IL-6 present in the diabetic rats were greatly reduced by EVSIO treatment. Furthermore, EVSIO revealed an anti-apoptotic effect on the diabetic rat pancreas by upregulating Bcl-2, and downregulating Bax and cleaved caspase-3 protein expression. Conclusion: The overall study results demonstrated the potential anti-hyperglycemic effect of EVSIO in the diabetic rats. The beneficial effects of EVSIO may be attributed to its ability to improve pancreatic ß-cell function and ameliorate ß-cell apoptosis by inhibiting oxidative stress and inflammatory cytokines.

3.
Plant Physiol Biochem ; 208: 108517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503190

RESUMO

Triacylglycerol (TAG) accumulation is frequently triggered in vegetative tissues experiencing heat stress, which may increases plant basal plant thermo-tolerance by sequestering the toxic lipid intermediates that contribute to membrane damage or cell death under stress conditions. However, stress-responsive TAG biosynthesis and the underlying regulatory mechanisms are not fully understood. Here, we investigated the lipidomic and transcriptomic landscape under heat stress in the leaves of sacha inchi (Plukenetia volubilis L.), an important oilseed crop in tropical regions. Under heat stress (45 °C), the content of polyunsaturated TAGs (e.g., TAG18:2 and TAG18:3) and total TAGs were significantly higher, while those of unsaturated sterol esters, including ZyE 28:4, SiE 18:2 and SiE 18:3, were dramatically lower. Transcriptome analysis showed that the expression of PvDGAT2-2, encoding a type II diacylglycerol acyltransferase (DGAT) that is critical for TAG biosynthesis, was substantially induced under heat stress. We confirmed the function of PvDGAT2-2 in TAG production by complementing a yeast mutant defective in TAG biosynthesis. Importantly, we also identified the heat-induced transcription factor PvMYB1 as an upstream activator of PvDGAT2-2 transcription. Our findings on the molecular mechanism leading to TAG biosynthesis in leaves exposed to heat stress have implications for improving the biotechnological production of TAGs in vegetative tissues, offering an alternative to seeds.


Assuntos
Óleos de Plantas , Fatores de Transcrição , Triglicerídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óleos de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resposta ao Choque Térmico/genética
4.
Front Nutr ; 11: 1354486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524850

RESUMO

Introduction: With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods: In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results: The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion: In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38430604

RESUMO

Typically, bioactive peptides were uncovered from complex hydrolysates using sequential bioassay-guided fractionation. To increase the efficiency of bioactive peptide screening, a simple and convenient tandem bioassay-guided fractionation based on solid-phase extraction (SPE) was conducted to screen the angiotensin-I-converting enzyme (ACE) inhibitory peptides from the hydrolysate of Inca nut cake protein (INCP). The so-called SCX-RP SPE system was constructed by assembling SCX (strong cation exchange) and RP (reversed phase) SPE cartridges. Using this tandem SCX-RP SPE, the INCP digested with combined gastrointestinal protease (INCP GP) was fractionated into 30 fractions. The fraction F11 exhibited the highest ACE inhibitory activity among 30 fractions. The ACE IC50 of fraction F11 was calculated to be 6.6 ± 0.5 µg/mL. The ACEI activity of fraction F11 was stronger than the INCP GP hydrolysate (ACE IC50 of 12.7 ± 0.4 µg/mL). The tandem SCX-RP SPE fractionation reduced the number of ACE inhibitory (ACEI) peptide candidates from 127 peptides in the INCP GP hydrolysate to only ten peptides in fraction F11. Subsequently, WALPTQSW (WW-8) and WLPTKSW (WW-7) from fraction F11 were synthesized, and their ACE IC50 was determined to be 4.7 ± 0.1 and 7.9 ± 0.1 µM, respectively. The dipeptidyl peptidase-4 (DPP4) inhibitory and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of WALPTQSW (WW-8) were also explored to give IC50 values of 131.7 ± 5.2 and 191.8 ± 7.0 µM, respectively. The molecular docking and inhibition mechanism studies indicated that WW-8 inhibited ACE and DPP4 as competitive and non-competitive inhibitors, respectively. The pre-incubation experiment of WW-8 toward ACE and DPP4 demonstrated that WW-8 was a true-inhibitor type. Additionally, the amount of WW-8 was quantified to be 5.8 ± 0.2 and 35 ± 0.4 µg per milligram hydrolysate and fraction F11, respectively. This study demonstrated tandem bioassay-guided SCX-RP SPE fractionation efficiently screened ACEI peptide derived from INCP GP hydrolysate, adding more value to Inca nut cake (a leftover of the oil industry) as a bioactive peptide precursor.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Hidrolisados de Proteína , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrolisados de Proteína/farmacologia , Dipeptidil Peptidase 4 , Nozes , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Extração em Fase Sólida , Peptidil Dipeptidase A
6.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399435

RESUMO

The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.

7.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004453

RESUMO

Plukenetia volubilis Linneo or Sacha Inchi (SI), a traditional natural remedy indigenous to Peru and Brazil, has garnered global attention due to its exceptional nutritional composition. Its protective effects against various non-communicable diseases, notably cardiovascular disease (CVD), have become a subject of interest in recent research. This comprehensive review summarizes the existing evidence from 15 relevant articles concerning the impact of SI on common CVD risk factors, including dyslipidemia, obesity, diabetes, and hypertension. The relevant articles were derived from comprehensive searches on PubMed, Scopus, Google Scholar, and Web of Science using predefined criteria and keywords related to the topic. Overall, SI demonstrated positive effects in attenuating dyslipidemia, obesity, diabetes, and hypertension. The multifaceted mechanisms responsible for the protective effects of SI against these CVD risk factors are primarily attributed to its antioxidative and anti-inflammatory properties. While preclinical studies dominate the current scientific literature on SI, there are limited clinical trials to corroborate these findings. Therefore, future well-designed, large-scale randomized clinical trials are highly recommended to establish the efficacy of SI and determine its optimal dosage, potential drug and food interactions, and practical integration into preventive strategies and dietary interventions for the high-risk populations.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37979081

RESUMO

Sacha Inchi (Plukenetia volubilis L.) is a plant native in the Amazon rainforest in South America known for its edible seeds, which are rich in lipids, proteins, vitamin E, polyphenols, minerals, and amino acids. Rural communities in developing nations have been using this plant for its health benefits, including as a topical cream for rejuvenating and revitalising skin and as a treatment for muscle pain and rheumatism. Although Sacha Inchi oil has been applied topically to soften skin, treat skin diseases, and heal wounds, its protein-rich seeds have not yet received proper attention for extensive investigation. Proteins in Sacha Inchi seeds are generally known to have antioxidant and antifungal activities and are extensively used nowadays in making protein-rich food alternatives worldwide. Notably, large-scale use of seed proteins has begun in nanoparticle and biofusion technologies related to the human health-benefitting sector. To extract and identify their proteins, the current study examined Sacha Inchi seeds collected from the Malaysian state of Kedah. Our analysis revealed a protein concentration of 73.8 ± 0.002 mg/g of freeze-dried seed flour. Employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PEAKS studio analysis, we identified 217 proteins in the seed extract, including 152 with known proteins and 65 unknown proteins. This study marks a significant step towards comprehensively investigating the protein composition of Sacha Inchi seeds and elucidating their potential applications in the food and biopharmaceutical sectors. Our discoveries not only enhance our knowledge of Sacha Inchi's nutritional characteristics but also pave the way for prospective research and innovative advancements in the realms of functional food and health-related domains.

9.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950645

RESUMO

Sacha inchi oil is growing in demand worldwide owing to its high fatty acid content of linolenic acid (44.30%-51.62%) and linoleic acid (34.08%-36.13%). In addition, Sacha inchi oil also contains phytosterols, such as stigmasterols (346- 456 µg/g), sitosterols (435-563 µg/g), and campesterols (10.47% ± 4.36%). Its main tocopherol is gamma-tocopherol (120.41-125.69 mg/100 g). The antinutrients in Sacha inchi seeds can be reduced by roasting prior to extraction. Various extractions, including both conventional and novel methods, have been used to extract Sacha inchi oil. However, the variety of extraction methods and origins of the seeds change the nutrient profiles, antinutrient content, and physicochemical properties. Incorporation of Sacha inchi oil into food products can increase its nutritional value, and it works as a moisturizing agent in cosmetic products. To obtain Sacha inchi oil with the desired properties and nutritional profile, this review summarizes the effects of different Sacha inchi seed oil extraction methods and processes on chemical compounds, antinutrient content, and physicochemical properties, including their potential and recent applications in food and cosmetic industries.


Sacha inchi oil yield, bioactive compounds, and physicochemical qualities are affected by cultivation area, seed chemical profile, extraction method, and conditions.Sacha inchi oil contains high amounts of linolenic and linoleic acid.Sacha inchi seeds contain heat-labile and heat-stable antinutrients, which are found in traces in the oil.Sacha inchi oil acts as a lipid source, animal fat substitute, and preservative, and increases nutritional value when added to food.Sacha inchi oil acts as a moisturizing agent.Sacha inchi is a promising new oil source for food and cosmetics, where demand has grown in Europe, the United States, and Asia.

10.
Heliyon ; 9(9): e19886, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809724

RESUMO

Chocolate is a widely consumed product with high levels of polyphenols; unfortunately, it is reduced during the process. Adding other components allows for counteracting the polyphenols lost during chocolate processing and reducing the content of unsaturated fatty acids, affecting its physical properties. This study identified the conching time, concentration of sauco by-products, and levels of sacha inchi oil to produce enriched dark chocolates. For this study, sauco by-products in percentages of 2, 6 and 10%, sacha inchi oil in levels of 1, 3, and 5%, and three conching times of 16, 20, and 24 h were added to 75% dark chocolates, and the process conditions were optimized through the response surface methodology (RSM). The physicochemical properties of the dark chocolates were studied, observing that the sauco by-product, sacha inchi oil, and conching time significantly affected (p < 0.05) the variables of antioxidant activity, total phenol content, rheology, hardness, and particle size. The R2 correlation of the factors declared against the variables indicated the model's reliability as it was close to 1. The results suggest that incorporating sauco by-products allows for obtaining chocolates with good chemical properties; however, high percentages of sacha inchi oil and shorter conching time cause a negative effect on the chocolate affecting the physical properties.

11.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761114

RESUMO

This study aimed to optimize the roasting conditions for sacha inchi (Plukenetia volubilis L.) seeds using the central composite design (CCD) of the response surface methodology (RSM). The antioxidant activity and oxidation indicators (peroxide and TBA values) were assessed, along with the impact of roasting on the fatty acid profile and chemical characterization of the seeds using gas chromatography. The results demonstrated that roasting partially increased the indicators of lipid oxidation in the oil extracted from roasted seeds, as well as the antioxidant activity of the seeds. The optimal roasting conditions were determined using CCD and RSM, resulting in an optimized temperature of 134.28 °C and 18.84 min. The fatty acid contents were not significantly affected by the roasting intensity, whereas a higher presence of amino acids was found in the seeds roasted at 140 °C for 15 min. In conclusion, it is suggested that the optimal roasting conditions for enhancing amino acid presence, improving antioxidant activity, and maintaining oxidative stability in sacha inchi seeds fall within the temperature range of 134-140 °C and a roasting duration of 15-20 min.

12.
Food Res Int ; 170: 113014, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316081

RESUMO

Sacha Inchi seed oil (SIO) is rich in omega 3, 6, and 9 fatty acids with important health benefits, but is temperature sensitive. Spray drying is a technology that improves the long-term stability of bioactive compounds. This work aimed to study the effect of three different homogenization techniques on some physical properties and bioavailability of microcapsules of Sacha Inchi seed oil (SIO) emulsions obtained by spray drying. Emulsions were formulated with SIO (5%, w/w), maltodextrin:sodium caseinate as wall material (10%, w/w; 85:15), Tween 20 (1%, w/w) and Span 80 (0.5%, w/w) as surfactants and water up to 100% (w/w). Emulsions were prepared using high-speed (Dispermat D-51580, 18,000 rpm, 10 min), conventional (Mixer K-MLIM50N01, Turbo speed, 5 min), and ultrasound probe (Sonics Materials VCX 750, 35% amplitude, 750 W, 30 min) homogenization. SIO microcapsules were obtained in a Mini Spray B-290 (Büchi) using two inlet temperatures of the drying air (150 and 170 °C). Moisture, density, dissolution rate, hygroscopicity, drying efficiency (EY), encapsulation efficiency (EE), loading capacity, and oil release in digestive fluids in vitro were studied. Results showed that the microcapsules obtained by spray-drying had low moisture values and high encapsulation yield and efficiency values (greater than 50% and 70%, respectively). The thermogravimetric analysis indicates that heat protection was assured, enhancing the shelf life and the ability to withstand thermal food processing. Results suggest that spray-drying encapsulation could be a suitable technology to successfully microencapsulate SIO and enhance the absorption of bioactive compounds in the intestine. This work highlights the use of Latin American biodiversity and spray drying technology to ensure the encapsulation of bioactive compounds. This technology represents an opportunity for the development of new functional foods, improving the safety and quality of conventional foods.


Assuntos
Euphorbiaceae , Alimento Funcional , Cápsulas , Emulsões , Secagem por Atomização , Óleos de Plantas
13.
Foods ; 12(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37297371

RESUMO

Sacha inchi (Plukenetia huayllabambana) oil was co-microencapsulated with natural antioxidant extracts (NAE), such as camu-camu (Myrciaria dubia (HBK) Mc Vaugh) fruit, Añil variety Andean potato (Solanum tuberosum andigenum, and elderberry fruit (Sambucus peruviana). Gum Arabic and the ternary combination of gum Arabic (GA) + maltodextrin (MD) + whey protein isolate (WPI) at different formulations were used as coating materials for the encapsulation process using spray-drying. The moisture content, particle size distribution and morphology, total phenolic content, antioxidant activity, fatty acid and sterol composition, oxidative stability, and shelf-life were evaluated. Co-microcapsules of sacha inchi (P. huayllabambana) oil with camu camu skin extract (CCSE) at 200 ppm encapsulated with GA + MD + WPI had the highest total polyphenol content (4239.80 µg GAE/g powder), antioxidant activity (12,454.00 µg trolox/g powder), omega-3 content (56.03%), ß-sitosterol (62.5%), greater oxidative stability (Oxidation Onset temperature of 189 °C), higher shelf-life (3116 h), and smaller particle sizes (6.42 µm). This research enhances the knowledge to obtain microcapsules containing sacha inchi (P. huayllabambana) oil with natural antioxidant extracts that could be used for the development of functional foods. Further research is needed to study the potential interactions and their influence between the bioactive components of the microcapsules and the challenges that may occur during scale-up to industrial production.

14.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177141

RESUMO

Alkyd resins are oil-based polymers that have been widely used for generations in the surface coating industry and beyond. Characterization of these resins is of high importance to understand the influence of its components on its behavior, compatibility with other resins, and final quality to ensure high durability. Here, NMR spectroscopy and GPC were used for characterizing differences in the chemical structure, molecular distribution, and dispersity between oil-based and fatty acid-based alkyd polymers made from sacha inchi and linseed oils. Sancha inchi (Plukentia volubilis L.) is a fruit-bearing plant native to South America and the Caribbean, and has a rich unsaturated fatty acid content. The effect of vegetable oil and polyol selection on the synthesis of alkyd resins for coating applications was analyzed. The influence of two different synthesis methods, monoglyceride and fatty acid processes, was also compared. Important structural differences were observed using NMR: one-dimensional spectra revealed the degree of unsaturated fatty acid chains along the polyester backbone, whereas, 2D NMR experiments facilitated chemical shift assignments of all signals. GPC analysis suggested that alkyd resins with homogeneous and high molecular weights can be obtained with the fatty acid process, and that resins containing pentaerythritol may have uniform chain lengths.

15.
J Food Sci Technol ; 60(4): 1425-1434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936123

RESUMO

The need for high-quality dietary proteins has risen over the years with improvements in the quality of life. Deep eutectic solvents (DESs) have been regarded as potential green alternatives to conventional organic solvents for protein extraction from press cake biomass, meeting the needs of sustainable development goals. Sacha inchi seed meal (SIM) is generated as a by-product of the seed oil extraction industries containing high protein content. The current study presents a novel ultrasound assisted DES method for the extraction of SIM protein in a sequential manner. Four different DESs were screened, out of which choline chloride (ChCl)/glycerol (1:2) gave promising results in protein recovery and was further selected. The sequential ultrasound-ChCl/glycerol could effectively extract high total crude protein content (77.43%) from SIM biomass compared to alone ultrasound (29.21%) or ChCl/glycerol (58.32%) treatment strategies. The SIM protein extracted from ultrasound-ChCl/glycerol exhibited high solubility (94.39%) at alkaline pH and highest in vitro digestibility (71.16%) by digestive enzymes (pepsin and trypsin). The protein characterization by SDS-PAGE and FTIR elucidated the structural properties and presence of different functional groups of SIM protein. Overall, the sequential ultrasound-ChCl/glycerol revealed its significant potential for one-step biorefining of the waste Sacha inchi meal biomass for circular bioeconomy.

16.
J Sci Food Agric ; 103(9): 4470-4480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36919865

RESUMO

BACKGROUND: Sacha inchi albumin exhibits considerable functional activity with notable anti-inflammatory and antioxidation properties, which could delay skin aging. However, its underlying mechanisms for delaying skin aging have not been elucidated. The aim of the present study was to investigate the anti-skin-aging effect of sacha inchi albumin (SIA) in d-galactose induced-aging mice. RESULTS: Sacha inchi albumin improved moisture content, collagen level, and the state of aged skin in rats. Sacha inchi albumin intervention markedly increased the skin antioxidant enzymatic activities including those of glutathione peroxidase, and catalase, but decreased the malondialdehyde content. It also regulated inflammation by reducing the level of tumor necrosis factor-α (TNF-α) and increasing the level of interleukin-6 (IL-6). Administration of SIA also increased the expression level of collagen I and III, increased the expression of tissue inhibitor of metalloprotease-1, and decreased the expression of metalloproteinases. Sacha inchi albumin can also activate the transforming growth factor-ß (TGF-ß)/Smad pathway. Meanwhile, 16S rRNA sequencing analysis revealed that SIA treatment altered the composition of microbiota, and increased the relative abundance of Lactobacillus, but decreased the relative abundance of Alloprevotella and Helicobacter, etc. Helicobacter was positively associated with malondialdehyde (MDA) content and was negatively related to IL-6. CONCLUSION: Sacha inchi albumin exhibits excellent anti-skin-aging effect, which provide a new insight for the development of functional sacha inchi albumin. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Envelhecimento da Pele , Camundongos , Ratos , Animais , Óleos de Plantas/química , Galactose , Interleucina-6/metabolismo , RNA Ribossômico 16S , Inflamação/tratamento farmacológico , Antioxidantes/metabolismo , Albuminas , Estresse Oxidativo
17.
J Sci Food Agric ; 103(6): 2926-2938, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692392

RESUMO

BACKGROUND: Sacha inchi meal (SIM) is a by-product of oil processing. Our previous studies showed that SIM hydrolysates exhibited dipeptidyl peptidase-IV (DPP-IV) inhibition activity. The objective of the present work was to identify and characterize the bioactive peptides from protein hydrolysates of SIM; enzyme kinetics and peptide-enzyme interaction were also investigated. RESULTS: From SIM hydrolysates, ten peptides responsible for the activity were identified: GPSRGF (GF-6), FPILSPDPA (FA-9), APYRRGGKI (AI-9), WPYH (WH-4), DPATWLALPT (DT-10), NPEDEFRQQ (NQ-9), APESKPVGV (AV-9), LEWRDR (LR-6), APVYWVQ (AQ-7) and LLMWPY (LY-6). The IC50 values of five peptides (GF-6, WH-4, AQ-7, AV-9 and LY-6) with better inhibitory activity on DPP-IV were within the range of 23.43-128.40 µmol L-1 . AQ-7 had the best activity, with an IC50 value of 23.43 µmol L-1 . Enzyme kinetics indicated the presence of various inhibition types (mixed, non-competitive and competitive). Isothermal titration microcalorimetry showed that the main forces of the binding sites between peptide (GF-6 or AQ-7) and DPP-IV were hydrogen bond, hydrophobic interaction and van der Waals force. The key residues involved in peptide-enzyme interaction were determined by molecular docking. Furthermore, at a concentration of 800 µmol L-1 , GF-6 was found to significantly increase the glucose consumption in insulin-resistant HepG2 cells (P < 0.05) compared with the model group. CONCLUSION: Sacha inchi meal-derived peptides displayed potent DPP-IV inhibition activity and could be used in the health food industry and as lead compounds for diabetes therapy. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Peptídeos , Simulação de Acoplamento Molecular , Peptídeos/química , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química
18.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675040

RESUMO

Sacha inchi meal (SIM) is a by-product of sacha inchi (considered as a "super-food") processing. In previous studies, we found that SIM protein hydrolysates exhibited pancreatic lipase inhibition activity. In this study, 10 bioactive peptides from those hydrolysates were identified. The top five peptides (NLYYKVV (NV-7), WWYVK (WK-5), WLLMWPYK (WK-8), EGLLMWPY (EY-8), and FPFFGYVWK (FK-9)) with strong pancreatic lipase inhibition activity had IC50 values of 34.01-246.50 µM, and displayed various inhibition types (mixed, non-competitive, and competitive type) by enzyme inhibition kinetics analysis. Fluorescence quenching analysis demonstrated that the interaction between the peptides and pancreatic lipase was mainly hydrogen bond and van der Waals force. The key residues involved in the peptide-enzyme interaction were determined by molecular docking. Moreover, the top two peptides were found to significantly inhibit fat accumulation and regulate lipid metabolism by alleviating the level of reactive oxygen species in HepG2 cells. Collectively, sacha inchi meal-derived peptides displayed potent lipid-lowering activity and could be used as materials of functional food.


Assuntos
Metabolismo dos Lipídeos , Óleos de Plantas , Óleos de Plantas/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/metabolismo
19.
Food Chem X ; 15: 100399, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211732

RESUMO

This study examined the changes in metabolites together with the flavor profiles of germinated Sacha inchi seeds during roasting by using gas chromatography. The results indicated that roasting partially increased the browning index, amino acid levels, total phenolic content, and antioxidant capacity, but slightly decreased the levels of reducing sugars. Oxidized and rancid compounds were significantly decreased at a 180 °C roasting temperature. Pyrazine, furan, and pyrrole were Maillard reaction products that were increased at 180 °C of roasting. Roasting at 145 °C for 45 min after germination for 4 days was determined to be the optimal conditions for roasting germinated Sacha inchi seeds, which reduced the off-flavor and burned taste. The roasted germinated Sacha inchi seed contains higher amino acids than raw seed, which could be used as an alternative source for food products and supplements. In addition, the roasted germinated seeds at 4 days were recommended for food applications.

20.
J Food Biochem ; 46(12): e14464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190151

RESUMO

The objective of this study was to determine the in vitro activities such as antioxidant and inhibitions of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase of sacha inchi protein hydrolysate (SPH) and its membrane ultrafiltration peptide fractions. SPH was prepared after hydrolysis of sacha inchi protein using papain followed by separation into peptide fractions (F1: <1 kDa, F2: 1-3 kDa, F3: 3-5 kDa, and F4: 5-10 kDa) via ultrafiltration membranes. SPH and the peptide fractions were tested for multifunctional properties, specifically functional ability as antioxidants and enzyme inhibitors. Surface hydrophobicity was an important contributing factor to the activity of antioxidative peptides. The DPPH inhibitory activity of F4 was significantly higher (p < .05) than activities of the SPH and other fractions. The smaller peptides with <1 kDa size (F1) showed the most potent (p < .05) antioxidant properties based on the stronger scavenging of ABTS, DPPH, and superoxide radicals in addition to better attenuation of linoleic acid peroxidation. Moreover, the F1 was also the strongest inhibitor of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase based on the lower IC50 values. It was concluded that the smaller size of the F1 peptides was the main determinant of its strong antioxidant and enzyme inhibition potency, which could be taken as an advantage to formulate functional foods and nutraceuticals with potential activities in ameliorating some of the chronic human diseases. PRACTICAL APPLICATIONS: The results of present study indicate that SPH and its ultrafiltration fractions are potential sources of antihypertensive, antidiabetic, inhibition of POP, reduced cholesterol, and strong antioxidant peptides. The strong angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme inhibitory efficiency of the F1 peptides (MW < 1 kDa) suggest potential utility as an antihypertensive, antidiabetic agent, reduce cholesterol and brain plasticity and memory formation because the small peptide size could enhance absorption from the gastrointestinal tract. Overall, results from this study indicate that SPH, especially the F1 peptides may have applications as ingredients for the formulation of functional foods and nutraceuticals.


Assuntos
Anti-Hipertensivos , Antioxidantes , Anti-Hipertensivos/química , Antioxidantes/química , Hipoglicemiantes/farmacologia , Oxirredutases , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A , Prolil Oligopeptidases , Hidrolisados de Proteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...